
Chapter 4

Forward Differencing

Horner’s algorithm is the fastest method for evaluating a polynomial at a single point. For a degree
n polynomial, it requires n multiplies and n adds.

If a polynomial is to be evaluated at several evenly spaced values t, t + δ, t + 2δ, . . . , t + kδ, the
fastest method is to use forward differences.

Consider a degree 1 polynomial
f(t) = a0 + a1t.

The difference between two adjacent function values is

∆1(t) = f(t + δ)− f(t) = [a0 + a1(t + δ)]− [a0 + a1t] = a1δ.

Thus, f(t) can be evaluated at several evenly spaced points using the algorithm:

∆1 = a1δ

t0 = 0

f(0) = a0

for i = 1 to k do

ti = ti−1 + δ

f(ti) = f(ti−1) + ∆1

endfor

Thus, each successive evaluation requires only one add, as opposed to one add and one multiply
for Horner’s algorithm.

This idea extends to polynomials of any degree. For the quadratic case,

f(t) = a0 + a1t + a2t
2.

The difference between two adjacent function values is

∆1(t) = f(t + δ)− f(t) = [a0 + a1(t + δ) + a2(t + δ)2]− [a0 + a1t + a2t
2]

∆1(t) = a1δ + a2δ
2 + 2a2tδ.

We can now write
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t0 = 0

f(0) = a0

for i = 1 to k do

ti = ti−1 + δ

∆1(ti) = a1δ + a2δ2 + 2a2ti−1δ

f(ti) = f(ti−1) + ∆1(ti−1)

endfor

In this case, ∆(t) is a linear polynomial, so we can evaluate it as above, by defining

∆2(t) = ∆1(t + δ)−∆1(t) = 2a2δ
2

and our algorithm now becomes

t0 = 0

f(0) = a0

∆1 = a1δ + a2δ2

∆2 = 2a2δ2

for i = 1 to k do

ti = ti−1 + δ

f(ti) = f(ti−1) + ∆1

∆1 = ∆1 + ∆2

endfor

It should be clear that for a degree n polynomial, each successive evaluation requires n adds and no
multiplies! For a cubic polynomial

f(t) = a0 + a1t + a2t
2 + a3t

3,

the forward difference algorithm becomes

t0 = 0

f(0) = a0

∆1 = a1δ + a2δ2 + a3δ3

∆2 = 2a2δ2 + 6a3δ3

∆3 = 6a3δ3

for i = 1 to k do

ti = ti−1 + δ

f(ti) = f(ti−1) + ∆1

∆1 = ∆1 + ∆2

∆2 = ∆2 + ∆3

endfor
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Several questions remain. First, what are the initial values for the ∆i if we want to start at
some value other than t = 0. Second, what is a general equation for the ∆i for a general degree n
polynomial f(t). Also, what if our polynomial is not in power basis.

These questions can be answered almost trivially by observing the following. Since ti+1 = ti + δ,
we have

∆1(ti) = f(ti+1)− f(t);

∆j(ti) = ∆j−1(ti+1)−∆j−1(ti), j = 2, . . . , n;

∆n(ti) = ∆n(ti+1) = ∆n(ti+k) = a constant

∆n+1 = 0

Thus, our initial values for ∆j(ti) can be found by simply computing f(ti), f(ti+1), . . . , f(ti+n)
and from them computing the initial differences. This lends itself nicely to a table. Here is the table
for a degree four case:

f(ti) f(ti+1) f(ti+2) f(ti+3) f(ti+4)
∆1(ti) ∆1(ti+1) ∆1(ti+2) ∆1(ti+3)
∆2(ti) ∆2(ti+1) ∆2(ti+2)
∆3(ti) ∆3(ti+1)
∆4(ti)
0 0 0 0 0

To compute f(ti+5), we simply note that every number R in this table, along with its right hand
neighbor Rright and the number directly beneath it Rdown obey the rule

Rright = R + Rdown.

Thus, we can simply fill in the values

∆4(ti+1) = ∆4(ti) + 0

∆3(ti+2) = ∆3(ti+1) + ∆4(ti+1)

∆2(ti+3) = ∆2(ti+2) + ∆3(ti+2)

∆1(ti+4) = ∆1(ti+3) + ∆2(ti+3)

f(ti+5) = f(ti+4) + ∆1(ti+4)

Note that this technique is independent of the basis in which f(t) is defined. Thus, even if it
is defined in Bernstein basis, all we need to do is to evaluate it n + 1 times to initiate the forward
differencing.

For example, consider the degree 4 polynomial for which f(ti) = 1, f(ti+1) = 3, f(ti+2) = 2,
f(ti+3) = 5, f(ti+4) = 4. We can compute f(ti+5) = −24, f(ti+6) = −117, and f(ti+7) = −328
from the following difference table:

t : ti ti+1 ti+2 ti+3 ti+4 ti+5 ti+6 ti+7

f(t) : 1 3 2 5 4 −24 −117 −328
∆1(t) : 2 −1 3 −1 −28 −93 −211
∆2(t) : −3 4 −4 −27 −65 −118
∆3(t) : 7 −8 −23 −38 −53
∆4(t) : −15 −15 −15 −15 −15
∆5(t) : 0 0 0 0 0 0 0 0

T. W. Sederberg, BYU, Computer Aided Geometric Design Course Notes October 29, 2009



42 Choosing δ

4.1 Choosing δ

This raises the important question of how to select an appropriate value for δ when using forward
differencing to plot a curve. One way to determine δ is so that distance from the the curve to its
polygonal approximation lies within a tolerance. A discussion of how to chose δ that will satisfy
such a requirement is found in Section 10.6.

A second criterion that might be used to chose δ arises in the problem or rasterizing a curve.
This means to “turn on” a contiguous series of pixels that the curve passes through, without any
gaps. If the control points of the degree n Bézier curve are Pi = (xi, yi) in pixel coordinates, then
let

d = max{xi − xi−1, yi − yi−1} i = 1, . . . , n

If you now evaluate the curve at n ∗ d + 1 evenly spaced values of t and paint each resulting pixel,
there will be no gaps in the drawing of the curve. Another way to say this, compute

δ =
1

n ∗ d
.

Then, compute the points P(i ∗ δ), i = 0 . . . , n ∗ d. Note that n ∗ d is an upper bound on the
magnitude of the x or y component of the first derivative of the curve.
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