
Chapter 1

Introduction

Computer aided geometric design (CAGD) concerns itself with the mathematical description of
shape for use in computer graphics, manufacturing, or analysis. It draws upon the fields of geometry,
computer graphics, numerical analysis, approximation theory, data structures and computer algebra.

CAGD is a young field. The first work in this field began in the mid 1960s. The term computer
aided geometric design was coined in 1974 by R.E. Barnhill and R.F. Riesenfeld in connection with
a conference at the University of Utah.

This chapter presents some basic background material such as vector algebra, equations for lines
and conic sections, homogeneous coordinates.

1.1 Points, Vectors and Coordinate Systems

Consider the simple problem of writing a computer program which finds the area of any triangle.
We must first decide how to uniquely describe the triangle. One way might be to provide the lengths
l1, l2, l3 of the three sides, from which Heron’s formula yields

Area =
√

s(s− l1)(s− l2)(s− l3), s =
l1 + l2 + l3

2
.

An alternative way to describe the triangle is in terms of its vertices. But while the lengths of
the sides of a triangle are independent of its position, we can specify the vertices to our computer
program only with reference to some coordinate system — which can be defined simply as any
method for representing points with numbers.

Note that a coordinate system is an artificial devise which we arbitrarily impose for the purposes
at hand. Imagine a triangle cut out of paper and lying on a flat table in the middle of a room.
We could define a Cartesian coordinate system whose origin lies in a corner of the room, and whose
coordinate axes lie along the three room edges which meet at the corner. We would further specify
the unit of measurement, say centimeters. Then, each vertex of our triangle could be described in
terms of its respective distance from the two walls containing the origin and from the floor. These
distances are the Cartesian coordinates (x, y, z) of the vertex with respect to the coordinate system
we defined.

Vectors A vector can be pictured as a line segment of definite length with an arrow on one end.
We will call the end with the arrow the tip or head and the other end the tail.

Two vectors are equivalent if they have the same length, are parallel, and point in the same
direction (have the same sense) as shown in Figure 1.1. For a given coordinate system, we can
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2 Points, Vectors and Coordinate Systems
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Figure 1.1: Equivalent Vectors

describe a three-dimensional vector in the form (a, b, c) where a (or b or c) is the distance in the x
(or y or z) direction from the tail to the tip of the vector.
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(a) Unit Vectors.
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(b) Vector in Component Form.

Figure 1.2: Vectors.

Unit Vectors The symbols i, j, and k denote vectors of “unit length” (based on the unit of
measurement of the coordinate system) which point in the positive x, y, and z directions respectively
(see Figure 1.2.a).

Unit vectors allow us to express a vector in component form (see Figure 1.2.b):

P = (a, b, c) = ai + bj + ck.

An expression such as (x, y, z) can be called a triple of numbers. In general, an expression
(x1, x2, . . . , xn) is an n-tuple, or simply a tuple. As we have seen, a triple can signify either a point
or a vector.
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Vector Algebra 3

Relative Position Vectors Given two points P1 and P2, we can define

P2/1 = P2 −P1

as the vector pointing from P1 to P2. This notation P2/1 is widely used in engineering mechanics,
and can be read “the position of point P2 relative to P1”

In our diagrams, points will be drawn simply as dots or small circles, and vectors as line segments
with single arrows. Vectors and points will both be denoted by bold faced type.

1.2 Vector Algebra

Given two vectors P1 = (x1, y1, z1) and P2 = (x2, y2, z2), the following operations are defined:

Addition:
P1 + P2 = P2 + P1 = (x1 + x2, y1 + y2, z1 + z2)

A

BA+B

B

A

B+A=A+B

(a) Vector Addition.

A

-B

A-B

(b) Vector Subtraction.

Figure 1.3: Vector Addition and Subtraction.

Subtraction:
P1 −P2 = (x1 − x2, y1 − y2, z1 − z2)

Scalar multiplication:
cP1 = (cx1, cy1, cz1)

Length of a Vector

|P1| =
√

x2
1 + y2

1 + z2
1

Dot Product The dot product of two vectors is defined

P1 · P2 = |P1||P2| cos θ (1.1)

where θ is the angle between the two vectors. Since the unit vectors i, j,k are mutually perpendicular,

i · i = j · j = k · k = 1
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4 Vector Algebra

i · j = i · k = j · k = 0.

The dot product obeys the distributive law

P1 · (P2 + P3) = P1 · P2 + P1 · P3,

As a result of the distributive law,

P1 · P2 = (x1i + y1j + z1k) · (x2i + y2j + z2k)
= (x1 ∗ x2 + y1 ∗ y2 + z1 ∗ z2) (1.2)

(1.2) enables us to compute the angle between any two vectors. From (1.1),

θ = cos−1

(
P1 · P2

|P1||P2|

)
.

Example. Find the angle between vectors (1, 2, 4) and (3,−4, 2).

Answer.

θ = cos−1

(
P1 · P2

|P1||P2|

)

= cos−1

(
(1, 2, 4) · (3,−4, 2)
|(1, 2, 4)||(3,−4, 2)|

)

= cos−1

(
3√

21
√

29

)

≈ 83.02◦

Cross Product: The cross product P1 ×P2 is a vector whose magnitude is

|P1 ×P2| = |P1||P2| sin θ

(where again θ is the angle between P1 and P2), and whose direction is mutually perpendicular to
P1 and P2 with a sense defined by the right hand rule as follows. Point your fingers in the direction
of P1 and orient your hand such that when you close your fist your fingers pass through the direction
of P2. Then your right thumb points in the sense of P1 ×P2.

From this basic definition, one can verify that

P1 ×P2 = −P2 ×P1,

i× j = k, j× k = i, k× i = j

j× i = −k, k× j = −i, i× k = −j.

The cross product obeys the distributive law

P1 × (P2 + P3) = P1 ×P2 + P1 ×P3.

This leads to the important relation

P1 ×P2 = (x1i + y1j + z1k)× (x2i + y2j + z2k)
= (y1z2 − y2z1, x2z1 − x1z2, x1y2 − x2y1)

=

∣∣∣∣∣∣

i j k
x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣
(1.3)
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Rotation About an Arbitrary Axis 5

Area of a Triangle. Cross products have many important uses, such as finding a vector which is
mutually perpendicular to two other vectors and finding the area of a triangle which is defined by
three points P1, P2, P3.

Area =
1
2
|P1/2||P1/3| sin θ1 =

1
2
|P1/2 ×P1/3| (1.4)

For example, the area of a triangle with vertices P1 = (1, 1, 1), P2 = (2, 4, 5), P3 = (3, 2, 6) is

Area =
1
2
|P1/2 ×P1/3|

=
1
2
|(1, 3, 4)× (2, 1, 5)|

=
1
2
|(11, 3,−5)| =

1
2
√

112 + 32 + (−5)2

≈ 6.225

1.2.1 Points vs. Vectors

A point is a geometric entity which connotes position, whereas a vector connotes direction and mag-
nitude. From a purely mathematical viewpoint, there are good reasons for carefully distinguishing
between triples that refer to points and triples that signify vectors [Goldman ’85]. However, no
problem arises if we recognize that a triple connoting a point can be interpreted as a vector from
the origin to the point. Thus, we could call a point an absolute position vector and the difference
between two points a relative position vector. These phrases are often used in engineering mechanics,
where vectors are used to express quantities other than position, such as velocity or acceleration.

1.3 Rotation About an Arbitrary Axis

P
!

P’

B

n

x
y

z

Figure 1.4: Rotation about an Arbitrary Axis

The problem of computing a rotation about an arbitrary axis is fundamental to CAGD and
computer graphics. The standard solution to this problem as presented in most textbooks on com-
puter graphics involves the concatenation of seven 4×4 matrices. We present here a straightforward
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6 Rotation About an Arbitrary Axis

solution comprised of the four simple vector computations in equations (1.6) through (1.9) — a
compelling example of the power of vector algebra.

Figure 1.4 shows a point P which we want to rotate an angle θ about an axis that passes through
B with a direction defined by unit vector n. So, given the angle θ, the unit vector n, and Cartesian
coordinates for the points P and B, we want to find Cartesian coordinates for the point P′.

The key insight needed is shown in Figure 1.5.a.
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v sin!

(a) Key Insight.
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(b) Labels.

Figure 1.5: Rotation about an Arbitrary Axis Using Vector Algebra.

Let u and v be any two three-dimensional vectors that satisfy u · v = 0 (that is, they are
perpendicular) and |u| = |v| &= 0 (that is, they are they same length but not necessarily unit
vectors). We want to find a vector r that is obtained by rotating u an angle θ in the plane defined
by u and v. As suggested in Figure 1.5,

r = u cos θ + v sin θ. (1.5)

With that insight, it is easy to compute a rotation about an arbitrary axis. Referring to the
labels in Figure 1.5.b, we compute

C = B + [(P−B) · n]n. (1.6)

u = P−C (1.7)

v = n× u (1.8)

Then, r is computed using equation (3.1), and

P′ = C + r. (1.9)

1.3.1 Matrix Form

It is possible to take these simple vector equations and to create from them a single 4× 4 transfor-
mation matrix for rotation about an arbitrary axis. While this is useful to do in computer graphics
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Rotation About an Arbitrary Axis 7

(where, in fact, this matrix is typically created by concatenating seven 4× 4 matrices), the simple
vector equations we just derived suffice for many applications. The derivation of this matrix is
presented here for your possible reference. We will not be using it in this course.

Let P = (x, y, z), P′ = (x′, y′, z′), B = (Bx, By, Bz), and n = (nx, ny, nz). We seek a 4 × 4
matrix M such that

M






x
y
z
1





=






x′

y′

z′

1






(Cx, Cy, Cz) = (Bx, By, Bz) + [xnx + yny + znz −B · n](nx, ny, nz) (1.10)

Cx = xn2
x + ynxny + znxnz + Bx − (B · n)nx (1.11)

Cy = xnxny + yn2
y + znynz + By − (B · n)ny (1.12)

Cz = xnxnz + ynynz + zn2
z + Bz − (B · n)nz (1.13)

u = (x, y, z)− (Cx, Cy, Cz) (1.14)

ux = x(1− n2
x)− ynxny − znxnz + (B · n)nx −Bx (1.15)

uy = −xnxny + y(1− n2
y)− znynz + (B · n)ny −By (1.16)

uz = −xnxnz − ynynz + z(1− n2
z) + (B · n)nz −Bz (1.17)

vx = nyuz − nzuy (1.18)
vy = nzux − nxuz (1.19)
vz = nxuy − nyux (1.20)

rx = ux cos θ + (nyuz − nzuy) sin θ (1.21)
ry = uy cos θ + (nzux − nxuz) sin θ (1.22)
rz = uy cos θ + (nxuy − nyux) sin θ (1.23)

(x′, y′, z′) = (Cx + rx, Cy + ry, Cz + rz) (1.24)

x′ = xn2
x + ynxny + znxnz + Bx − (B · n)nx + (1.25)

(x(1− n2
x)− ynxny − znxnz + (B · n)nx −Bx) cos θ + (1.26)

ny(−xnxnz − ynynz + z(1− n2
z) + (B · n)nz −Bz) sin θ − (1.27)

nz(−xnxny + y(1− n2
y)− znynz + (B · n)ny −By) sin θ (1.28)

x′ = x[n2
x + (1− n2

x) cos θ] + y[nxny(1− cos θ)− nz sin θ]
+ z[nxnz(1− cos θ) + ny sin θ] + (Bx − (B · n)nx)(1− cos θ) + nzBy − nyBz. (1.29)
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8 Parametric, Implicit, and Explicit Equations

Since n2
x + n2

y + n2
z = 1, (1− n2

x) = n2
y + n2

z. In like manner we can come up with an expression for
y′ and z′, and our matrix M is thus





n2
x + (n2

y + n2
z) cos θ nxny(1− cos θ)− nz sin θ nxnz(1− cos θ) + ny sin θ T1

nxny(1− cos θ) + nz sin θ n2
y + (n2

x + n2
z) cos θ nynz(1− cos θ)− nx sin θ T2

nxnz(1− cos θ)− ny sin θ nynz(1− cos θ) + nx sin θ n2
z + (n2

x + n2
y) cos θ T3

0 0 0 1



 (1.30)

with
T1 = (Bx − (B · n)nx)(1− cos θ) + nzBy − nyBz

T2 = (By − (B · n)ny)(1− cos θ)− nzBx + nxBz

T3 = (Bz − (B · n)nz)(1− cos θ) + nxBy − nyBx

1.4 Parametric, Implicit, and Explicit Equations

There are basically three types of equations that can be used to define a planar curve: parametric,
implicit, and explicit. The parametric equation of a plane curve takes the form

x =
x(t)
w(t)

y =
y(t)
w(t)

. (1.31)

The implicit equation of a curve is of the form

f(x, y) = 0. (1.32)

An explicit equation of a curve is a special case of both the parametric and implicit forms:

y = f(x). (1.33)

In these notes, we restrict ourselves to the case where the functions x(t), y(t), w(t), f(x) and f(x, y)
are polynomials.

Any curve that can be expressed parametrically as in equation (1.31) is referred to as a rational
curve. In the classical algebraic geometry literature, a rational curve is sometimes called a unicursal
curve, which means that it can be sketched in its entirety without removing one’s pencil from the
paper. In computer aided geometric design, rational curves are often called rational parametric
curves. The case where w(t) ≡ 1 is called a polynomial parametric curve (or a non-rational
parametric curve). A curve that can be expressed in the form of equation (1.32) is known as a
planar algebraic curve.

The parametric equation of a curve has the advantage of being able to quickly compute the (x, y)
coordinates of points on the curve for plotting purposes. Also, it is simple to define a curve segment
by restricting the parameter t to a finite range, for example 0 ≤ t ≤ 1. On the other hand, the
implicit equation of a curve enables one to easily determine whether a given point lies on the curve,
or if not, which side of the curve it lies on. Chapter 16 shows that it is always possible to compute
an implicit equation for a parametric curve. It is trivial to convert en explicit equation of a curve
into a parametric equation (x = t, y = y(x)) or into an implicit equation (f(x)− y = 0). However,
a curve defined by an implicit or parametric equation cannot in general be converted into explicit
form.
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Lines 9

A rational surface is one that can be expressed

x =
x(s, t)
w(s, t)

y =
y(s, t)
w(s, t)

z =
z(s, t)
w(s, t)

(1.34)

where x(s, t), y(s, t), z(s, t) and w(s, t) are polynomials. Also, a surface that can be expressed by
the equation

f(x, y, z) = 0 (1.35)

where f(x, y, z) is a polynomial is called an algebraic surface.
A rational space curve is one that can be expressed by the parametric equations

x =
x(t)
w(t)

y =
y(t)
w(t)

z =
z(t)
w(t)

. (1.36)

The curve of intersection of two algebraic surfaces is an algebraic space curve.

1.5 Lines

The simplest case of a curve is a line. Even so, there are several different equations that can be used
to represent lines.

1.5.1 Parametric equations of lines

Linear parametric equation

A line can be written in parametric form as follows:

x = a0 + a1t; y = b0 + b1t

In vector form,

P(t) =
{

x(t)
y(t)

}
=

{
a0 + a1t
b0 + b1t

}
= A0 + A1t. (1.37)

In this equation, A0 is a point on the line and A1 is the direction of the line (see Figure 1.6)

A0

A1

Figure 1.6: Line given by A0 + A1t.
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10 Lines

P
0

t = t
0

P
1

t = t
1

(a) Line given by P(t) = (t1−t)P0+(t−t0)P1
t1−t0

.

P0
t = 1

P1

t = 4

t = 2

1/3

2/3

(b) Affine Example.

Figure 1.7: Affine parametric equation of a line.

Affine parametric equation of a line

A line can also be expressed

P(t) =
(t1 − t)P0 + (t− t0)P1

t1 − t0
(1.38)

where P0 and P1 are two points on the line and t0 and t1 are any parameter values. Note that
P(t0) = P0 and P(t1) = P1. Note in Figure 1.7.a that the line segment P0–P1 is defined by
restricting the parameter:

t0 ≤ t ≤ t1.

Sometimes this is expressed by saying that the line segment is the portion of the line in the parameter
interval or domain [t0, t1].

We will see that the line in Figure 1.7.a is actually a degree one Bézier curve. Most commonly,
we have t0 = 0 and t1 = 1 in which case

P(t) = (1− t)P0 + tP1. (1.39)

Equation 1.39 is called an affine equation, whereas equation 1.37 is called a linear equation.
An affine equation is coordinate system independent, and is mainly concerned with ratios and
proportions. An affine equation can be thought of as answering the question: “If a line is defined
through two points P0 and P1, and if point P0 corresponds to parameter value t0 and point P1

corresponds to parameter value t1, what point corresponds to an arbitrary parameter value t?”
Figure 1.7.b shows a line on which P0 corresponds to parameter t = t0 = 1 and P1 is assigned
parameter value t = t1 = 4. For example, the point corresponding to t = 2 is one third of the way
from P0 to P1.

Note that an affine equation can be derived from any two points on a line, given the parameter
values for those points. If P(α) is the point corresponding to parameter value t = α and if P(β)
is the point corresponding to parameter value t = β (α &= β), then the point corresponding to
parameter value γ is

P(γ) = P(α) +
γ − α

β − α
[P(β)−P(α)] =

(β − γ)P(α) + (γ − α)P(β)
β − α
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Rational parametric equations

A line can also be defined using the following parametric equations:

x =
a0 + a1t

d0 + d1t
; y =

b0 + b1t

d0 + d1t
. (1.40)

This is often called rational or fractional parametric equations.
Recall that the homogeneous Cartesian coordinates (X,Y, W ) of a point are related to its Carte-

sian coordinates by

(x, y) = (
X

W
,

Y

W
).

Thus, we can rewrite equation 1.40 as

X = a0 + a1t; Y = b0 + b1t; W = d0 + d1t.

This equation can be further re-written in terms of homogeneous parameters (T, U) where t = T
U .

Thus,

X = a0 + a1
T

U
; Y = b0 + b1

T

U
; W = d0 + d1

T

U
.

But since we can scale (X, Y, W ) without changing the point (x, y) which it denotes, we can scale
by U to give

X = a0U + a1T ; Y = b0U + b1T ; W = d0U + d1T.

1.5.2 Implicit equations of lines

A line can also be expressed using an implicit equation:

f(x, y) = ax + by + c = 0; or F (X, Y, W ) = aX + bY + cW = 0.

The line defined by an implicit equation is the set of all points which satisfy the equation f(x, y) = 0.
An implicit equation for a line can be derived given a point P0 = (x0, y0) on the line and the

normal vector n = ai + bj. As shown in Figure 1.8, a point P = (x, y) is on this line if

P - P0

P

n

P0

line

(P - P0) • n = 0

Figure 1.8: Line defined by point and normal.

(P−P0) · n = 0

from which
f(x, y) = (x− x0, y − y0) · (a, b) = ax + by − (ax0 + by0) = 0. (1.41)

From equation 1.41, a line whose implicit equation is ax+by+c = 0 has the normal vector n = ai+bj.
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12 Conic Sections

Implicit equation of a line through two points

Three points (X1, Y1, W1), (X2, Y2, W2) and (X3, Y3, W3) are collinear if
∣∣∣∣∣∣

X1 Y1 W1

X2 Y2 W2

X3 Y3 W3

∣∣∣∣∣∣
= 0.

Thus, the equation of the line through two points is
∣∣∣∣∣∣

X Y W
X1 Y1 W1

X2 Y2 W2

∣∣∣∣∣∣
= (Y1W2 − Y2W1)X + (X2W1 −X1W2)Y + (X1Y2 −X2Y1)W = 0.

1.5.3 Distance from a point to a line

If n = ai+bj is a unit vector (that is, if a2 +b2 = 1), then the value f(x, y) in equation 1.41 indicates
the signed perpendicular distance of a point (x, y) to the line. This can be seen from equation 1.41
and Figure 1.8. The dot product (P − P0) · n is the projection of vector (P − P0) onto the unit
normal n, which is the perpendicular distance from P to the line.

Since the coefficients of an implicit equation can be uniformly scaled without changing the curve
(because if f(x, y) = 0, then c × f(x, y) = 0 also), the implicit equation of a line can always be
normalized:

f(x, y) = a′x + b′y + c′ =
a√

a2 + b2
x +

b√
a2 + b2

y +
c√

a2 + b2
= 0.

Then, f(x, y) is the signed distance from the point (x, y) to the line, with all points on one side of
the line having f(x, y) > 0 and the other side having f(x, y) < 0. Note that |c′| = |f(0, 0)| is the dis-
tance from the origin to the line. Thus, if c = 0, the line passes through the origin. The coefficients
a′ and b′ relate to the slope of the line. Referring to Figure 1.9, a′ = cos(θ), b′ = sin(θ), and c′ = −p.

 p 

θ
x

y

Figure 1.9: Normalized line equation.

1.6 Conic Sections

A conic section (or, simply conic) is any degree two curve. Any conic can be expressed using a
degree two implicit equation:

ax2 + bxy + cy2 + dx + ey + f = 0
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Conic Sections 13

or, in homogeneous form:

aX2 + bXY + cY 2 + dXW + eY W + fW 2 = 0. (1.42)

Conics can be classified as hyperbolas, parabolas and ellipses (of which the circle is a special case).
What distinguishes these cases is the number of real points at which the curve intersects the line
at infinity W = 0. A hyperbola intersects W = 0 in two real points. Those points are located an
infinite distance along the asymptotic directions. A parabola is tangent to the line at infinity, and
thus has two coincident real intersection points. This point is located an infinite distance along the
parabola’s axis of symmetry. Ellipses do not intersect the line at infinity at any real point — all real
points on an ellipse are finite.

To determine the number of real points at which a conic intersects the line at infinity, simply
intersect equation 1.42 with the line W = 0 by setting W = 0 to get:

aX2 + bXY + cY 2 = 0

from which
Y

X
=
−b ±

√
b2 − 4ac

2c
.

The two values Y/X are the slopes of the lines pointing to the intersections of the conic with the
line at infinity. Thus, if b2 − 4ac > 0, there are two distinct real intersections and the conic is a
hyperbola. If b2 − 4ac = 0, there are two coincident real intersections and the conic is a parabola,
and if b2 − 4ac < 0, there are no real intersections and the conic is an ellipse. The value b2 − 4ac is
known as the discriminant of the conic.

1.6.1 Parametric equations of conics

The parametric equation of any conic can be expressed:

x =
a2t2 + a1t + a0

d2t2 + d1t + d0
; y =

b2t2 + b1t + b0

d2t2 + d1t + d0
.

or, in homogeneous form,
X = a2T

2 + a1TU + a0U
2;

Y = b2T
2 + b1TU + b0U

2;

W = d2T
2 + d1TU + d0U

2.

It is also possible to classify a conic from its parametric equation. We again identify the points at
which the conic intersects the line at infinity. In the parametric form, the only places at which (x, y)
can be infinitely large is at parameter values of t for which

d2t
2 + d1t + d0 = 0.

Thus, we note that d2
1− 4d0d2 serves the same function as the discriminant of the implicit equation.

If d2
1 − 4d0d2 > 0, there are two real, distinct values of t at which the conic goes to infinity and

the curve is a hyperbola. If d2
1 − 4d0d2 < 0, there are no real values of t at which the conic goes

to infinity and the curve is an ellipse. If d2
1 − 4d0d2 = 0, there are two real, identical values of t at

which the conic goes to infinity and the curve is a parabola.
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